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Reliable values of the B factor for simple crystals 
can be calculated from an accurate set of dispersion 
relations at a particular temperature, provided due 
care is exercised in fitting these dispersion curves, and 
an adequate frequency sampling is taken. 

Present knowledge of interatomic forces does not 
allow a direct calculation of the anharmonic contribu- 
tions to the Debye-Waller factor; it may be possible 
to derive information concerning these forces from the 
measured high temperature behaviour of B in certain 
cases. 

The author would like to express his gratitude to 
Dr A.W.Pryor and Mr T.M.Sabine for encourage- 
ment and advice during the course of this investigation. 
The goniometer furnace was fabricated by Mr G. Z. A. 
Stolarski. 
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An Iterative Method of Slit-Correcting Small Angle X-ray Data 

BY JAMES A. LAKE* 

Department of  Physics, University of  Wisconsin, Madison, Wisconsin, U.S.A. 
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An iterative method has been developed for correcting experimental small-angle X-ray data simultane- 
ously for the effects of height and width smearing. The advantages of the method are that it does not 
require the differentiation of an experimental curve, that the height and width weighting functions are 
completely arbitrary, that the corrected curve remains well defined at small values of the scattering angle, 
and that the method is designed for use with digital computers. The method may also be applied to 
the solution of other similar integral equations. 

Introduction 

In order to obtain sufficient scattered intensity in a 
small-angle X-ray experiment one normally uses a slit 
collimation system. The observed intensity in this case 

* NSF Cooperative Predoctoral Fellow. 

is not that obtained with a pinhole collimator, but is 
the pinhole intensity averaged (smeared) over an angu- 
lar range which is defined by the slit geometry. 

Guinier & Fournet (1947) and DuMond (1947) 
solved the smearing equation for the case of infinitely 
high and negligibly narrow slits. Their method was 
modified by Kratky, Porod & Kahovec (1951) for use 
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with certain types of finite slit height geometries. 
Schmidt & Hight (1960), Heine & Roppert (1962), 
Kent & Brumberger (1964), Chu & TanCreti (1964) 
and Schmidt (1965) have used, with modifications, the 
equations of Guinier & Fournet, DuMond,  and 
Kratky, Porod & Kahovec to program digital com- 
puters. Recently, Mazur & Wims (1967) have developed 
a correction theory for slit systems having negligibly 
narrow widths and arbitrary height geometries; how- 
ever, no practical tests of the theory have yet been 
made. None of these methods corrects for arbitrary slit 
height and width geometries. 

We discuss in the next section a new and general 
approach to slit corrections. 

Theory 

By small-angle X-ray scattering we mean the scat- 
tering in that region where we can approximate sin 0 
with O. 0 is the angle between the central rays of the 
incident and scattered beams. If the angular range of 
X-rays passed by the slits when the detecting aperture is 
at a fixed position is also small in this same sense then 
the relationship between the slit-smeared experimental 
curve, Ios(h), and the pinhole curve, Io(h) is given by 

los(h)= l_ool_ooWZ(z) Wu(y)Io[((h- y)Z + z2)*]dydz , (1) 

where h = (4~/2). sin(O/2). Wz and Wu are the slit height 
and slit width weighting functions respectively, the 
forms of which depend upon the collimating system, 
and which are normalized so that 

I : : W z ( z ) d z = I ~  Wy(y)dy=l.  

Equation (1) is tractable to iterative approximation 
methods. Assuming, as an approximation to I0, an 
initial trial curve, IoT, it is possible to smear /0T and 
compare this smeared trial curve, called IOTS, with Ios. 
The mutual relationships of loTs, los, and IoT may be 
examined in order to generate a better approximation 
to/o .  In Fig. 1 are drawn a 'typical' set of Io, INT, los 
and INTS, where INT is the ( N +  1)th approximation 
to I0 and INTS is the smear of INT. If I0 is larger than 
IlVT at some point and if I0 and INT do not decrease 
more rapidly than either the z or the y weighting func- 
tions, then since the effect of (1) is to average I0 over 
some region of h, it seems we must have that Ios is 
larger than INTS. Thus it is reasonable that 

IO--INT"~__Ios--INTs 
o r  

IO"~--I(N+I)T=INT+(Ios--INTs) . (2) 

Equation (2) is the type of equation we have been 
searching for and works quite well; however, it has a 
serious drawback. If the 'breadth'  of the height weight- 
ing function is larger than, or comparable to, the 
'breadth'  of the central maximum of/0, then the suc- 
cessive iterations of (2) converge slowly to/0.  

To obtain faster convergence in the region of the 
central peak an appropriate equation is 

IO--INT~--A • (IoS--INTs) (3) 

where A is a positive function of h greater than 1 in 
the central peak region and is approximately equal to 
one in the regions in which the corrections are smaller. 
An A with these properties is A =INT/INTs. For this 
choice of A, (3) reduces to 

IO"~ I(N+I)T=(IlvT/INTs) . IOS . (4) 

Equation (4) has all of the virtues of (2) and converges 
faster. In addition, the IuT(h) are positive for all h 
provided los(h) is positive and provided loT(h) is chosen 
positive. 

So far we have ignored the selection of an appro- 
priate first trial function. When one examines smeared 
curves and the corresponding pinhole curves it is no- 
ticed that they have roughly the same shape; they have 
peaks at similar locations and they have minima at 
about the same positions. Thus a likely candidate for 
the first trial function is the experimental curve los 
itself. One might be tempted to use a constant curve 
as the first trial curve. If this is done and one uses 
equation (4) to predict the next trial curve, it is found 
that the second trial curve is the experimental curve. 
For these reasons we will use a first trial curve which 
is the experimental curve. 

Numerical methods 

Two Fortran 63 programs were written in order to use 
this method to obtain solutions to equation (1). The 
first employed equation (2) and the second used equa- 

1 

lO-1 

z 

~> 1°-2 _ 

% ' ,  

1 0 - 3  - 

I I I 
0'0 0"I 0"2 0"3 

h (A -~) 

Fig. 1. The upper solid line is the curve which would be seen 
with pinhole collimation. The lower solid curve is the smear 
of the pinhole collimation curve. The curve drawn with 
long dashes is a hypothetical trial function and the curve 
drawn with shorter dashes is the smear of the hypothetical 
trial function. These curves are quite representative of the 
relationships which exist between Io, los, INT and IN~'S. 
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tion (4) to desmear los, i.e. to solve equation (1) for I0. 
In both programs the smears of the successive approx- 
imations to I0 were printed and by comparison with 
los afforded a check on the convergence of the suc- 
cessive trial functions. Since the width corrections are 
in general small, the width integrations were done by 
the method of Gaussian quadratures using a two point 
integration. The height integration was done by Simp- 
son's rule. All calculations were done on a CDC 1604 
computer. Desmearing for both height and width cor- 
rections required about twelve seconds for each itera- 
tion using an experimental curve extending from 
0 to 1 /~-1 in one hundred and twenty-five 0.008/~-a 
intervals and a height weighting function which van- 
ished at +0.120,~-a. 

Discussion 

Equation (4) was found to be more applicable to small- 
angle X-ray scattering slit corrections than equation 
(2) and therefore this discussion is limited to it. 

For  a number of curves equation (4) converges com- 
pletely after only one iteration. If the width corrections 
are negligible and one uses infinitely high slits to smear 
a curve of the form Ios=IoTOCl/h 3 one obtains IoTSOC 
1/h 2 and equation (4) predicts the correct angular de- 
pendence after one iteration. Perhaps the most im- 
portant case is that in which the width corrections are 
negligible and the height weighting function is a Gaus- 

sian of the form exp(-a2z2). The smear of the Gaus- 
sian I0 = e x p ( -  b2h 2) is Ios= IoT= [a2/(a 2 + b2)] ~ • I0 and 
likewise l o t s=  [a2/(a2+ b2)]. I0. Thus equation (4) pre- 
dicts I l z=Io  and is exact after the first iteration. The 
importance of this case lies in the fact that in small- 
angle X-ray scattering the experimental intensities be- 
have as Gaussians in the region of the origin and one 
is frequently interested in the exact constant which 
appears in the exponential. The fast convergence of 
Gaussian curves allows one to use the results of only 
a few iterations and to be confident that the corrected 
curve in the Gaussian region is valid. 

In order to investigate the behavior of (4) it is illu- 
minating to see what happens when the first trial curve 
agrees with the pinhole curve everywhere except in some 
small region. In Fig. 2, I0 is a constant everywhere and 
10T is the same constant everywhere except for a Gaus- 
sian blip centered about 0.20 A-1. For  this test the 
width corrections were neglected and the height weight- 
ing function was a Gaussian which was eight times as 
wide as the Gaussian blip. As Fig.2 shows, the suc- 
cessive trial functions converge to I0 quite rapidly. 
Furthermore, since any curve can be constructed from 
a sum of blips, provided the blips are narrow enough, 
and since equation (1) is linear in I0 the behavior shown 
in Fig.2 demonstrates in a general sense the conver- 
gence of the successive Ilw, to I0. 
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Fig.2. The curve denoted by the squares is the initial trial 
function, IOT, which was used in conjunction with a smeared 
curve, los, which had a constant value everywhere. After 
two iterations the third approximation to I0, I2T, is shown 
by the triangles. After four iterations the convergence is 
almost complete as seen by the fifth approximation, I4r, 
(circles). 
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Fig. 3. The upper (in the region of the origin) curve is the 

scattered intensity from a sphere of uniform density as 
observed with perfect collimation. The lower (in the region 
of the origin) curve is the smear of the upper curve using 
very high, but narrow, slits. The solid points represent the 
corrected intensity as calculated by (4) after four iterations. 
After twelve iterations the differences between the perfect 
collimation curve and the desmeared curve were not visible 
on this scale. It also should be noted that a graph such as 
this magnifies small absolute errors. 
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Perhaps the most difficult curve to desmear is the 
curve generated by a sphere of uniform electron den- 
sity. The curve consists of a series of maxima and 
minima with the intensity rising and falling by many 
factors of ten in small intervals of h. The curve shown 
in Fig.3 was smeared, and later desmeared, using a 
Gaussian height weighting function which fell to 1/e 
at _+0.30/~-t and neglecting the width corrections. 
Since 0.30 A -1 encompassed two secondary peaks this 
was felt to correspond as closely as was practical to 
infinite slit height smearing. The results are shown in 
Fig. 3. The differences between I0 and I4T are less than 
one per cent at the points near the peaks but still 
almost five hundred per cent at the calculated points 
near the local minima. Nevert.heless, the differences 
would be barely observable experimentally, if at all. 
If we smeared and desmeared this same sphere scat- 
tering function using a height weighting function which 
fell to 1/e at + 0.075 A -I then the errors at all calcu- 
lated points, including the local minima, were less than 
one per cent after four iterations. 

It should be noted that this method is not limited 
to solving the small-angle X-ray collimation equation. 
The author first derived it in order to correct the X-ray 
scattering curves for the effect of non-monochromati- 
city of the incident beam. Ergun (1966) has independ- 
ently used equation (2) to unfold the convolution equa- 
tion. Provided that a unique solution exists, it seems 
that the method can be applied to the solution of any 
integral equation of the form 

Io[f(Yx,Y2, . . . , yn ,  x)]dyldy2 . . . dyn 

where W is the appropriate weighting function and f 
is a function o fy l , y2 ,  • • • ,Yn and x. One such equation 
which might be of interest is the general (i.e. sin 0 is 
not necessarily equal to 0) X-ray slit-smearing equa- 
tion. 

Programs can be made available on request by 
writing to Dr W.W. Beeman, Biophysics Laboratory, 
University of Wisconsin, Madison, Wisconsin. 

The author would like to express his thanks to 
Professors Anderegg and Beeman for their helpful dis- 
cussions and encouragement. 
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Design Principles of X-ray Diffraction Cameras Linear in f(0) 
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The problem of designing an X-ray diffraction camera linear in an arbitrary function f(O) of the Bragg 
angle is considered. While a general solution determining the shape has not been found, the complete 
solution for f =  kO is known, and particular solutions for f =  k sin 0 and f =  k sin20 are given. The shape 
of a camera linear, along the equatorial plane, in sin 0 is an upright cardioid cylinder with the specimen 
at the cusp. For f =  k sinZ0 no analytic solution has been found, but perturbation and numerical methods 
have yielded one particular shape satisfying the condition. The practical feasibility of the cameras is 
discussed. 

In conventional X-ray powder diffraction cameras the 
specimen is situated at the centre or on the circum- 
ference of a circular cylinder formed by the film. The 
primary beam strikes the specimen at a right angle to 

the cylinder axis or to a line parallel with it. The recti- 
fied length of an arc in the equatorial plane is propor- 
tional to 20 when the specimen is at the centre (Debye- 
Scherrer geometry), or to 40 when the specimen is on 


